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Abstract

Skewness plays an important role in the stochastic frontier model. Ever since the model
was introduced by Aigner, Lovell and Schmidt (1977), Meeusen and van den Broeck (1977),
and Battese and Cora (1977), researchers have often found the residuals estimated from
these models displayed skewness in the wrong direction. In such cases applied researchers
were faced with two often overlapping alternatives, respecify the model and/or obtain a new
sample, neither of which are particularly appealing due to inferential problems introduced
by such data-mining approaches. Recently, Simar and Wilson (2009) developed a bootstrap
procedure to address the skewness problem in �nite samples. Their �ndings points to the
latter alternative as potentially the more appropriate�increase the sample size. That is,
the skewness problem is a �nite sample one and it often arises in �nite samples from a
data generating process based on the correct skewness. Thus the researcher should �rst
attempt to increase the sample size instead of changing the model speci�cation if she �nds
the "wrong" skewness in her empirical analyses. Our paper considers an alternative ex-
planation to the "wrong" skewness problem and implicitly a new solution. We utilize the
Qian and Sickles (2008) model in which an upper bound to ine¢ ciencies or a lower bound
to e¢ ciencies is speci�ed. Especially we consider the case there ine¢ ciencies are assumed
to be doubly-truncated normal, which allows the least square residuals to display skewness
in both direction and nests the standard half-normal and truncated-normal ine¢ ciencies
models. We show and prove that �nding incorrect skewness does not necessarily indicate
that the model is misspeci�ed and the only misspeci�cation should arise from the fact that
we might consider wrong distribution for ine¢ ciency process. We also conduct exhaustive
set of Monte Carlo experiments that con�rm our general �ndings and show that "wrong"
skewness is also a large sample issue and there is nothing wrong about this if one considers
the bounded ine¢ ciency approach. In this way the "wrong" skewness, while problematic in
standard models, becomes a property of the samples in which the distribution of ine¢ cien-
cies is bounded.

JEL Classi�cation: C13, C21, C23, D24, G21.
Key words and phrases: Stochastic frontier, bounded ine¢ ciency, skewness, identi�-
cation



1 Introduction

Stochastic frontier model was �rst introduced by Aigner, Lovell and Schmidt,
Meeusen and van den Broeck, Battese and Corra almost simultaneously in 1977. It
assumes that parametric functional form exists between dependent and independent
variables, as opposed to the alternative approach of data envelopment analysis (DEA)
proposed by Charnes et al. (1978) and the free disposable hull (FDH) of Deprins,
Simar,and Tulkens (1984). However, its great virtue essentially lies on the idea of
de�ning an error term composed of two parts, one-sided error term that captures
the e¤ects of ine¢ ciencies relative to the stochastic frontier and two-sided error term
that captures random shocks, measurement error and other statistical noise, and
allows random variation of frontiers across �rms. This formulation proved to be
more realistic than the deterministic frontier model proposed by Aigner and Chu
(1968), since it acknowledges the fact that the entire deviation from frontier cannot be
attributed solely to technical ine¢ ciency which is under �rm�s control. Since that time
a myriad of papers have emerged in the literature discussing either methodological or
practical issues, as well as a series of applications of these models to the wide range of
data sets. A recent detailed discussion of any innovations and empirical applications
in this area is provided by Kumbhkar and Lovell (2000) and Greene (2007)1 .
As mentioned above, the literature on stochastic frontier models is very large

and developments have been made in various directions regarding model speci�ca-
tion and estimation techniques. There are two main methods of estimation that
researchers adopt in general. One is based on traditional stochastic frontier models
as they �rst have formulated and uses maximum likelihood techniques (ML). The
other is the Bayesian estimation method introduced by van de Broeck et al. (1994)
and Koop(1994), and Koop et al. (1995, 1997), which utilizes Gibbs sampling algo-
rithm with data augmentation and Markov chain Monte Carlo (MCMC) techniques
to estimate the model parameters and individual or mean ine¢ ciencies. Kim and
Schmidt (2000) provide review and empirical comparison of these two methods in
panel data models. Regarding the model speci�cation researchers attempted to relax
the most restrictive assumptions of classical stochastic frontier model. In this paper
we mainly interested in the speci�cation of the distributions of the two-sided random
noise and ine¢ ciencies, and especially in the later one. Aigner et al. (1977) in their
pioneering work proposed normal distribution for the random noise and half-normal
for the ine¢ ciency process. These random errors were assumed to be independent
and identically distributed across observations and statistically independent of each
other. At the same time, Meeusen and van de Broeck (1977) and Aigner et al. (1977)
broaden the list of distribution of ine¢ ciencies by including the exponential distrib-
ution as well. Other more �exible densities were introduced later, characteristic of
which were the gamma distribution proposed by Greene (1980a, 1980b) and Stevenson

1see The Measurment of Productive E¢ ciency and Productivity Growth, Chapter 2
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(1980) and truncated normal distribution introduced by Stevenson (1980). In light
of Bayesian estimation techniques, other complex distributions such as the lognormal
and Weibull distributions were also proposed2. In subsequent years researchers both,
using classical and Bayesian methods, dealt with relaxing the assumption of speci�c
distribution for ine¢ ciencies, introducing time varying and �rm-speci�c e¤ects, and
determining correlation structure to random errors. Sickles (2005) analyze in great
details the implication of these issues in the panel data models.
A common problem that arises in �tting stochastic frontier models is that the least

squares residuals estimated from these models may display skewness in the "wrong"
direction. While the theory predicts they will be negatively (positively) skewed in
production (cost) frontiers they are positively (negatively) skewed. As researchers
consider this statistic to be an important indicator of the speci�cation of the stochastic
frontier model, whenever they �nd the least squares residuals skewed in the "wrong"
direction in �nite samples they tend to believe that the model is misspeci�ed or the
current data is inconsistent with this model. Two course of actions are oftentimes
taken: recpecify the model and/or obtain a new sample which will result in the
desired sign of skewness. In most of situations applied researchers proceed assuming
the absence of ine¢ ciencies and perform least squares estimation3. This weak point
of stochastic frontier models is emphasized in a series of papers, some of which try to
justify that this phenomenon might arise in �nite samples even for models that are
correctly speci�ed. Of course this problem can be avoided in panel data models by
either utilizing the �xed e¤ects model of Schmidt and Sickles (1984) or time-varying
models proposed by Cornwell et al. (1990, 1996) and Kumbhakar (1990, 1991) wherein
no assumptions are made on the distribution of ine¢ ciency term or the correlation
between ine¢ ciency term and the regressors.
This paper intends to illustrate how the bounded ine¢ ciency formulation, pro-

posed by Qian and Sickles (2008), overcomes the issue of the "wrong" skewness in
stochastic frontier model. We �rst show and test that the imposition of an upper
bound to ine¢ ciency enables the distribution of one-sided ine¢ ciency process to dis-
play positive and negative sign of skewness. This is particularly true for the �exible
distributions such as truncated normal and gamma. We consider the former distrib-
ution in current paper for ease of illustration, although the analysis can be extended
to include the gamma and the Weibull distributions as well. Imposing the bound
on truncated normal density function apart from the zero yields skewness that can
have both, positive or negative sign depending on the position of the bound in the
support of ine¢ ciency distribution and thus justifying the occurrence of the so called
"wrong" skewness. We show and prove formally that normal-truncated normal model
is capable to handle and estimate the model with the "wrong" skewness. While based

2see Deprins and Simar (1989b) and Migon and Medici (2001).
3This is in particular due to the results that Waldman et al. (1980) and Waldman (1982) obtain

for stochastic frontier models when half-normal distribution for ine¢ ciencies is speci�ed.
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on the Waldman proof many researchers consider the "wrong" skewness issue as a
�nite sample, we show that it is very reasonable to obtain it in large samples also.
Truncating the right tail of ine¢ ciency distribution, we also perform series of Monte
Carlo experimentations and show that in the cases where we have positively skewed4

distribution we could still get very reasonable MLE estimates of lamda as well as
other parameters of the model. We also �nd that even in cases where OLS residu-
als display negative skewness, MLE values of lamda can be statistically insigni�cant
(close to zero). In sum, we conjecture that there is no strong connection between
skewness sign and MLE estimates of lamda. So, according to our �ndings, the only
misspeci�cation in stochastic frontier models when skewness is found to be in opposite
direction can be in the distribution of ine¢ ciency. To correct this, we simply suggest
to use the model with the bounded ine¢ ciency.
The present paper is divided into �ve sections. In section 2 the general problem

of "wrong" skewness in stochastic frontier models and its implications is discussed,
as well as solutions proposed in literature to solve it. Section 3 provides the main
framework of stochastic frontier model with bounded ine¢ ciency. In section 4 we
check the validity of the bounded ine¢ ciency model under the "wrong" skewness using
simple models and generalize Waldman�s proof to formally support the stochastic
frontier models under these circumstances. Monte Carlo simulation results are also
discussed. Section 6 contains our main conclusions.

2 Skewness issue in Stochastic Frontier Analysis

2.1 "Wrong" skewness and its importance in frontier models

As an important diagnostic test of stochastic frontier models, skewness statistic
of least squares residuals has received considerable attention of theoretical and applied
researchers all of these years. The error speci�cation of models is "i = �i � ui

5 for
production frontiers, where �i represents statistical noise and is assumed to be i:i:d
as N(0; �2�) and ui � 0 represents technical ine¢ ciency which is also i:i:d random
element that follows one-sided distribution. Under the usual assumptions �i and ui are
statistically independent of each other and from regressors. Given these assumptions,
the distribution of the composed error is asymmetric and non-normal implying that
least squares estimators, if applied, will be ine¢ cient and will not provide us with any
measurement of technical ine¢ ciency. However, OLS provides consistent estimation
of all parameters except the intercept, since E("i) = �E(ui) � 0. Moreover,

4We perform Monte Carlo simulations for production frontiers. The result can be easily extended
to cost frontiers as well.

5"i = �i + ui for the case of cost frontiers.
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E[("i � E["i])
3] = E[(�i � ui + E[ui])

3] = �E[(ui � E[ui])
3] (1)

which implies that the negative of the third moment of OLS residuals is a consistent
estimator of the skewness of one-sided error.
The common distributions that appear in the literature are positively skewed

re�ecting the fact that the big proportion of the �rms attain levels of production
not very far from frontier. This theoretically means that, whenever we substract the
positively skewed ine¢ ciency component from symmetric error, the composite error
should display negative skewness (positive skewness in case of cost frontiers). Based
on these results, researchers �nd stochastic frontier models inappropriate to model the
ine¢ ciencies as they obtain residuals skewed in the "wrong" direction. The typical
conclusion is that, either the model is messpeci�ed or the data is not compatible with
this model. However, there can be a third interpretation as well. This can be based
on the fact that ine¢ ciencies might nave been drawn from distribution which displays
negative skewness.
Formally, the problem of skewness is discussed in Olson et al., (1980) in their

derivation of corrected ordinary least squares (COLS) estimates as an alternative to
maximum likelihood estimates. They refer to this problem as a "Type I" failure.
COLS proceed the estimation of the slope parameters by OLS, which are unbiased
and consistent. The OLS estimate of constant term is biased and can be corrected by
simply adding

p
2=� �̂u to it. This term is the estimated bias of the OLS estimator

of the constant term and can be easily calculated. The estimates of �2� and �
2
u are

derived by method of moments techniques using the second and third moments of
OLS residuals. These are consistent, although not asymptotically e¢ cient, and are
given by

�̂2u = [
p
2=�(

�

� � 4)�̂3]
2=3 (2)

and

�̂2� = �̂2 � (
� � 2
�

)�̂2u (3)

where �̂2 and �̂3 are the estimated second and third moments of the OLS residuals,
respectively.
It is obvious from 2 that this method posses a serious �ow whenever �̂3 is positive,

since the estimated variance of ine¢ ciencies becomes negative! In this case Waldman
(1982) shows that MLE estimates of �2u is zero and that the model parameters can
be e¢ ciently estimated by OLS. Bellow we outline the main steps and results of
Waldman�s proof. Starting from log-likelihood function of normal-half-normal model
which is written as
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logL = nlog(
p
2=�)� nlog(�) +

nX
i=1

log[1� �("i�
�
)]� 1

2�2

nX
i=1

"2i (4)

where "i = yi � xi�, � = �u
�v
; �2 = �2v + �

2
u, and �(�) denotes the cdf of the standard

normal distribution, Waldman notes there are two stationary points that characterize
the log-likelihood function. Under the parameter vector �0 = (�0; �2; �), the �rst
stationary point is the one for which the �rst-order derivatives of above function are
zero and the second is the OLS solution for � wherein the parameter � is set to zero.
The superiority of these two stationary points is then compared in cases of the wrong
skewness. One way to do this is to examine the second-order derivative matrix of
log-likelihood function at these two points. The Hessian matrix evaluated at OLS
solution, �� = (b0; s2; 0), is

H(��) =

24 �s�2
Pn

i=1 xix
0
i

p
2=�s�1

Pn
i=1 xi 0p

2=�s�1
Pn

i=1 xi �2n=� 0
0 0 �n=2s4

35 (5)

where b = (
Pn

i=1 xix
0
i)
�1Pn

i=1 xiyi, s
2 = 1

n

Pn
i=1 e

2
i and ei is the least squares residual.

This matrix is singular with k + 1 negative characteristic roots and one zero
root. The log-likelihood function is examined in the direction determined by the
characteristic vector associated with the zero root which is given by the vector z =
(s
p
2=�; 1; 0). The term of interest is then the sign of

�logL = logL(�� + �z)� logL(��) (6)

= ��2n
�
+

nX
i=1

log[2� 2�(ei�s�1 � �2
p
2=�)]

where � > 0 is an arbitrary small number. Using Taylor�s series expansion it can
be easily shown that

�logL = (�3=6s3)
p
2=�[(� � 4)=�]

nX
i=1

"3i +O(�4) (7)

which clearly shows that if
Pn

i=1 "
3
i > 0 then maximum of the log-likelihood function is

located at OLS solution and which is superior to MLE. Again this result suggests two
strategies for practitioners: apply OLS whenever the least squares residuals display
positive sign or increase the sample size, since

plim(
1

n

nX
i=1

"3i ) = �3u
p
2=�[(� � 4)=�] < 0 (8)
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which implies that asymptotically the problem of the "wrong" skewness goes away.
This is true in particular if the ine¢ ciencies are drawn from the half-normal dis-

tribution. What if they are not? What if they are drawn from the distribution
which displays negative skewness as well? We will attempt to give answers to these
questions.
The problem of the "wrong" skewness is also made apparent and emphasized by

the two widely-used computer packages used to estimate stochastic frontiers. The �rst
package LIMDEP 7.0, which is developed by Greene (1995), calculates and checks the
skewness of the OLS residuals just before maximum likelihood estimation begins. In
case the sign of the skewness statistic is positive, signi�cantly or not, the message
appears that warns user about the misspeci�cation of the model and suggests to
use OLS instead of MLE. The second software FRONTIER 4.1, produced by Coelli
(1996), also obtains the OLS estimates �rst as a starting values for the grid search
of starting value of the 
6 parameter. If the skewness is positive, the �nal maximum
likelihood value of this parameter is very close to zero, indicating no ine¢ ciencies.
More detailed description and comparison of these packages can be found in Sena
(1999).
Based on these results, several parametric and non-parametric test statistics have

been developed to check the skewness of least squares residuals in stochastic frontier
models. Schmidt and Lin (1984) proposed the test statisticp

b1 =
m3

m
3=2
2

(9)

where m2 and m3 represent the second and the third moments of the empirical distri-
bution of the least squares residuals. The distribution of

p
b1 is not straightforward

and the application of this test requires special tables provided by D�Agostino and
Pearson (1973). Coeli (1995) proposed an alternative test statistic for testing whether
the third moment of residuals is greater than or equal to zerop

b�1 =
m3

(6m3
2=N)

1=2
(10)

where N denotes the number of observations in sample. Under the null hypothesis
of zero skewness, the third moment of OLS residuals is asymptotically distributed
as a normal random variable with zero mean and variance 6m3

2=N . This implies
that

p
b�1 is asymptotically distributed as a standard normal variable and one can

consult the corresponding statistical tables for making an inference. These two tests,
although easily computed and implemented, have unknown �nite sample properties.
Coeli (1995) conducts Monte Carlo experimentations and shows that

p
b�1 has correct

size and good power in small samples. This is the reason why this test statistic is
commonly accepted and used in applications.

6
 = �u
�u+��

which is another reparametrization used in stochastic frontier models
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2.2 Solutions to the "wrong" skewness

Nonetheless, solutions considered in introduction for the "wrong" skewness
essentially constitute no solutions with regard of the stochastic frontier model. Set-
ting the variance of ine¢ ciency process to be equal to zero simply because the OLS
residuals happened to have an opposite sign does not seem to be a very convincing
argument. This would imply that all the �rms in the industry are fully e¢ cient,
fact that is not true if one examines the relative productivities of �rms or countries
over time. On the other hand, data-mining techniques will introduce inferential prob-
lems and possibly bias in parameters and their standard errors according to Leamer
(1978). Most importantly, the availability of the data in economics is very limited
and thus this alternative seems to be not realistic in most of the times. An alterna-
tive that argues that the ine¢ ciencies are drawn from the distribution with negative
skew should be interpreted with caution. The major problem with this assumption is
that it implies that there is only a very small fraction of the �rms that attain a level
of productivity or cost close to the frontier. This fact is also falsi�ed by the data.
Carree (2002) considers a distribution for ine¢ ciencies that allows for both, nega-
tive and positive skewness7. He proposes a binomial distribution b(n; p) which for
range of values of parameter p is negatively skewed. He derives method-of-moments
estimators in the same way as Olson et al. (1980) and Greene (1990) do and gives
explanation of how theoretically and empirically the "wrong" skewness issue may
arise in stochastic frontier model. The shortcoming of this approach, however, is that
MM-estimators may not be de�ned for some empirical values of the higher sample
moments of the least squares residuals. Empirically, the use of the binomial distribu-
tion can be justi�ed by the model in which cycle of innovations and imitations occurs.
The negatively skewed distribution arises from the fact that few �rms in the industry
innovate and the rest try to imitate them. While the period of imitation extends a
considerable large number of �rms may experience very large ine¢ ciencies. Based
on the real-world examples, this model can be hardly applicable. In addition, this
approach is well understood and applied for cross-sectional data, but it is not clear
how it will work in panel data stochastic frontier models. As we show later in this
paper, the bounded ine¢ ciency formulation does not faces such problems and has
a nice interpretation for an industry or countries in both, cross-sectional and panel
data models.
On the other hand, Greene (2007) and more recently Simar and Wilson (2009)

note that in the �nite samples, even the correctly speci�ed stochastic frontier model
is capable to produce least squares residuals with opposite skewness sign with rela-
tively high frequency. This fact is even better justi�ed under the case of bounded

7Other autors also considered distributions with negative skew (see Johnson et al. 1992, 1994)
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ine¢ ciencies. We provide a simple Monte Carlo study in section 4 which con�rms
these results. In application of the stochastic frontier model to the airlines panel data,
Greene (2007) obtains positively skewed residuals. He corrects this issue by reversing
the sign of the third moment of the OLS residuals to compute the �rst-round method-
of-moments estimators of � and �. Under this strategy, reasonable and statistically
signi�cant estimates of � and � are obtained, suggesting the evidence of technical
ine¢ ciency. Simar and Wilson (2009) develop a bootstrap procedure that produces
ine¢ ciency estimates even if the least squares residuals have "incorrect" skewness
sign. Nevertheless, these �ndings also indicate that skewness statistic shouldn�t be
related so closely to the ine¢ ciency concept and especially to the parameters � and
�, since even in the cases of the "correct" skewness one may obtain MLE estimates
of lamda close to zero.

3 Stochastic frontier model with bounded ine¢ -
ciency

3.1 Model

In this section we brie�y introduce the stochastic frontier model with bounded
ine¢ ciency proposed by Qian and Sickles (2008)8. The formulation of the model is
similar to the traditional stochastic frontier model with only di¤erence that an upper
bound to ine¢ ciencies or a lower bound to e¢ ciencies is speci�ed. In this way a second
truncation point, other than zero, is imposed to the distribution of the ine¢ ciency
process. The model in Cobb-Douglas log-linear form can be written as

yi = xi� + "i (11)

where

"i = �i � ui (12)

yi denotes the log output, xi is the matrix of log of k inputs, �i is the random statistical
noise, and ui de�nes the ine¢ cency component. Under the usual assumptions, �i �iid
N(0; �2�), ui �iid fu(x) is non-negative random variable and f(�) is de�ned on positive
domain. Three distributions are considered for the ine¢ ciencies: doubly truncated
normal; truncated half � normal; and truncated exponential distribution. Also,
�i and ui are assumed to be statistically independent from each other and from
regressors.

8For detailed description as well as Monte Carlo experiments of this model see the corresponding
paper.
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The initial purpose of the bounded ine¢ ciency model was to introduce a stochastic
frontier model in which the bound can be used for gauging the tolerance for or ruth-
lessness against the ine¢ cient �rms and thus to serve as an index of competitiveness
of an industry. At the same time it was introducing another time-varying technical
e¢ ciency model in the literature. In this paper we note another usefulness of this
model which is re�ected in the �exibility of one-sided distribution of ine¢ ciencies.
This �exibility especially enables the truncated-normal distribution with strictly pos-
itive mean to produce positive, negative, and zero skewness. This leads us to take a
closer look at the doubly truncated normal ine¢ ciencies whose density is given by

fu(x) =
1
�u
�(x��

�u
)

�(B��
�u
)� �(��

�u
)
I[0;B](x); �u > 0; B > 0 (13)

where �(�) and �(�) are the cdf and pdf of the standard normal distribution respec-
tively, and I(�) denotes the indicator function.
It can be easily veri�ed that this distribution generalizes the truncated-normal

(B =1), truncated-half normal (� = 0), and the half-normal (B =1; � = 0) distri-
butions. The same generalization and �exibility can be shown for other distributions
used to model the ine¢ ciencies in stochastic frontier models, such as the gamma
distribution e:t:c:

3.2 Estimation

Under the appropriate � parametrization used in Aigner at al. (1977), the log-
likelihood function for the doubly truncated normal model is given by

log(L) = �n ln[�( B � �

�u(�; �)
)� �( ��

�u(�; �)
)] (14)

�n ln� � n

2
ln(2�)�

nX
i=1

("i + �)2

2�2

+

nX
i=1

lnf�((B + "i)�+ (B � �)��1

�
)

��("i�� ���1

�
)g

where �u(�; �) = �q
1+ 1

�2

, � = �u
��
, and "i = yi � xi�.
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This log-likelihood function can be maximized to obtain the MLE estimates of the
model parameters along with the parameter that determines the bound of the one-
sided distribution. While the support of the distribution of u depends on the bound,
the support of the composite error is unbounded. Hence, the regularity conditions
for MLE are not violated and we can get consistent and asymptotically e¢ cient
estimators. However, the global identi�ability ala Rothenberg (1971) of this model
fails, which is also true for the normal-truncated normal model, and we can identify
some parameters only locally. We provide more discussion on identi�cation in the
appendix of this paper.
Moreover, the truncation parameterB makes more sence in highly deregulated and

competitive markets and its estiamte can provide a useful index of competitiveness
of a market or an industry. In addition

E[uij"i = "̂i] (15)

where "̂i = yi � Xi�̂, can be used in the same spirit as in Jondrw et al. (1982) to
derive individual and mean technical ine¢ ciencies.

4 Skewness statistic under the bounded ine¢ cien-
cies

4.1 Derivation of skewness and COLS estimates with doubly-
truncated-normal ine¢ ciencies

The location parameter of the doubly � truncated � normal distribution, as a
function of the imposed bound, mean and the variance of the normal distribution is
given by

 1(B; �; �
2
u) = E(u) = �+ �u� (16)

with

� � �(�1)� �(�2)

�(�2)� �(�1)
(17)

where �1 =
��
�u
, �2 =

B��
�u

; and � is the mean of the normal distribution, while �(�)
and �(�) are the cdf and pdf of the standard normal distribution, respectively. �
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represents the inverse Mill�s ratio and it is equal to
p
2=� for the normal-half-normal

model. It should be noted that �1 and �2 are lower and upper truncation points of
the standard normal density, respectively.
The central population moments up through order four as a functions of B, �,

and �2u are given by

 2(B; �; �
2
u) = �2u(1� �2 +

�1� (�1)� �2�(�2)

�(�2)� �(�1)
) (18)

 3(B; �; �
2
u) = �3u(2�

3 � [3(�1�(�1)� �2�(�2)

�(�2)� �(�1)
) + 1]� (19)

+
�21�(�1)� �22�(�2)

�(�2)� �(�1)
)

 4(B; �; �
2
u) = �4u(�3�4 + 2[3(

�1�(�1)� �2�(�2)

�(�2)� �(�1)
� 1)]�2 (20)

�4�(�
2
1�(�1)� �22�(�2)

�(�2)� �(�1)
)

+3(
�1�(�1)� �2�(�2)

�(�2)� �(�1)
) +

�31�(�1)� �32�(�2)

�(�2)� �(�1)
+ 3)

Two special cases immediately arise from the doublyt runcated normal distribu-
tion, one is the normal distribution and the other is the half-normal distribution. If
we let �1 = �1 and �2 = 1 then � becomes zero and if we additionally use the
L�Hospital�s Rule, under which lim�1!�1 �1�(�1) = lim�2!1 �2�(�2) = 0 and also
lim�1!�1 �

2
1�(�1) = lim�2!1 �

2
2�(�2) = 0, we obtain exactly the cumulants of the nor-

mal distribution. On the other hand, if only the lower truncation exists (�1 = 0) and
� = 0 we obtain results for the half-normal distribution. It is also straightforward to
obtain results for truncated normal distribution.
Using these expressions the skewness of the doubly-truncated-normal distribution

is calculated then as


1(B; �; �
2
u) =

 3
 23=2

=
 3

 2
p
 2

=
(2�3 � [3( �1�(�1)��2�(�2)

�(�2)��(�1)
) + 1]� ++ �21�(�1)��22�(�2)

�(�2)��(�1)
)

1� �2 + �1�(�1)��2�(�2)
�(�2)��(�1)

(21)
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This statistic along with the kurtosis are parameters which describe the shape
of the distribution independent of location and scale. Most of the non-symmetric
distributions have either positive or negative 
1. In this particular case the sign of
skewness is ambiguous. It is either positive whenever B > 2� or negative otherwise.
Note that this is true for � strictly positive since bound is also by assumption a
strictly positive value9.
So now what are the implications for skewness having both signs in the stochastic

frontier analysis framework? Theoretically, it justi�es the fact that the least squares
residuals can be skewed in both directions while the variance of ine¢ ciency term is
nonzero. Technically, in �nite samples anything can happen and the skewness statistic
is more variable and prone to outliers and the "wrong" skewness can be obtained with
non-zero probability.
One could employ the COLS estimation method to obtain �rst round method-

of-moments estimates of � and � in order to start the iterations. However, the
second and higher order moments of " under a doubly-truncated-normal model are
non-linear functions of parameters. Thus the global identi�ability of the model fails
(Rothenberg, 1971), which is also the case for the truncated-normal model. Greene
(1993), and Ritter and Simar (1997) provide more discussion on identi�cation issues
in SFM10. On the other hand, the Fisher�s information matrix is nonsingular at any
point of the parameter space � for which � > 0 and is not too large. This may
establish local identi�ability of the model ala Rothenberg. As for �! 0 and �!1,
Wang and Schmidt (2008) show that the distribution of û collapses at the point E[u]
and converges to the distribution of u, respectively. We do not further discuss these
limiting cases in the current paper.
The COLS estimators of variances of ine¢ ciency term and the noise are given by11

�̂2u = [
�m̂3

2�3 � [3( �1�(�1)��2�(�2)
�(�2)��(�1)

) + 1]� + �21�(�1)��22�(�2)
�(�2)��(�1)

]2=3 (22)

and

�̂2v = m̂2 � �̂2u(1� �2 +
�1� (�1)� �2�(�2)

�(�2)� �(�1)
) (23)

9see appendix for graphical representation of doubly truncated ine¢ ciencies with � > 0.
10The identi�cation in cases of normal-truncated normal and normal-doubly truncated models is

discussed in the appendix
11The second and third central moments of OLS residuals are m̂2 = �

2
v+�

2
u(1��2+

�1�(�1)��2�(�2)
�(�2)��(�1)

)

and m̂3 = �
3
u(2�

3�[3( �1�(�1)��2�(�2)�(�2)��(�1)
)+1]�+

�21�(�1)��
2
2�(�2)

�(�2)��(�1)
) respectively. Solving these two equations

we get COLS estimators of �2v and �
2
u.
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where m̂2 and m̂3 are the second and the third sample moments of least squares
residuals.

For the illustration of the skewness problem we can �x the values of parameters B
and � and calculate �2v and �

2
u from (22) and (23)12. Since the negative of the third

moment of the OLS residuals is an unbiased and consistent estimator of the skewness
of ine¢ ciencies, one can see that the estimate of the �2u can have positive sign even in
the case of positive skewness as opposed to the standard models. Most importantly,
the "type I" failure goes away asymptotically since positive m̂3 would imply that  3
is negative, which is whenever B < 2� and so �̂2u cannot be never negative. In cases
where we have B = 2� the ratio in (22) is unidenti�ed. By applying L�Hospital rule
and evaluating the limits we can see that the variance of ine¢ ciency term is strictly
positive number. The only case that it is zero is when the bound is zero.
We can test the extent to which the distribution of unobservable ine¢ ciencies

can display negative or positive skewness using the observable residuals according
to the expression in (1). For this purpose we can utilize the adjusted for skewness
test statistic proposed by Bera and Premaratne (2001) , since the excess kurtosis is
not zero. By using the standard test for skewness we will have either over-rejection
or under-rejection of the null hypothesis of non-negative skewness and this will de-
pend primarily on the sign of the kurtosis (excess ). In addition, since there are two
points at which the doubly-truncated-normal distribution has zero skewness the stan-
dard tests are not appropriate once they cannot distinguish these, fact that would
lead researchers falsely to not reject the null hypothesis of zero variance. The mod-
i�ed likelihood ratio statistic (see Lee, 1993), which is asymptotically distributed as
1
2
�2(0) + 1

2
�2(1) does not faces such problems.

We also conduct Monte Carlo experiment in the same spirit as in Simar and
Wilson (2009) wherein they note that in the �nite samples even the correctly speci�ed
stochastic frontier model is capable of generating least squares residuals with the
"wrong" skewness with relatively high frequency. They calculate the proportion of
samples with positively skewed residuals which converges to zero as the sample size
grows large. They conduct a Monte Carlo experiment and calculate the proportion
of samples with positively skewed residuals. This proportion converges to zero as
the sample size grows large. We conduct the same experiment under current error
speci�cation and display the results in table 1 in the appendix. We set the parameter
� to 1 and use inverse CDF method to sample from convolution of ine¢ ciency and
the noise distributions by varying the bound parameter13. By this way we examine all
the three cases of the skewness sign and compute the proportion of 1000 samples with
positive skewness. Our �ndings again clearly indicate that the skewness issue is also

12In normal-half-normal model these values are also �xed ( B =1 , � = 0 ).
13see appendix for the sampling from the distribution of the composite error " using the inverse

CDF method
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a large sample issue. This means that if the true DGP is based on ine¢ ciencies that
are drawn from doubly-truncated-normal distribution and researcher fails to see that
and she �nds the skewness statistic having the wrong direction then she will reject
her model. Even worse, if there is a potentiality of increasing the sample size and
researcher keeps increasing it and �nds continuously positive signs of skewness then at
the end of the day she will erroneously assume that all �rms in her sample are supper
e¢ cient. The �exibility of the bounded ine¢ ciency approach avoids this problem. We
also conduct experiments for other error speci�cation such as truncated-half-normal
(� = 0) and truncated exponential model. To save space we do not report their
results but it is worth to mention that in these case for certain levels of the bound
the skewness statistic becomes statistically insigni�cant and so the null hypothesis of
no ine¢ ciencies cannot be rejected , even if � is not zero, applying the standard tests.
We also note in our Monte Carlo experiments that if the DGP from which a sample of
data is drawn has bounded ine¢ ciency then it will mask the true skewness. It is often
the case in such settings that point estimates of skewness may have the "wrong" sign.
However, this is simply due to the weak identi�ability of skewness in a stochastic
frontier with bounded ine¢ ciency and the "wrong" sign is not "signi�cantly wrong"
in a statistical sense.

4.2 Generalization of Waldman�s proof

We can formally proof our �ndings by following the main arguments in the Wald-
man�s proof. To compare and contrast the problem of the "wrong" skewness with
the case of the normal-half-normal model, we will treat without loss of generality the
values of parameters B and � as �xed and consider the scores of parameter � = (
�0; �2; �) as a function of these parameters. Note that, the normal-half-normal model
�xes these values at in�nity and zero, respectively. In this case the second-order
derivative matrix at OLS solution point, �� = (b0; s2; 0), is given by

H(��) =

24 �s�2
Pn

i=1 xix
0
i � 1

s4

Pn
i=1(ei � �)xi 0

� 1
s4

Pn
i=1(ei � �)xi

n
2s4
� 1

s6

Pn
i=1(ei � �)2 0

0 0 0

35 (24)

where b = (
Pn

i=1 xix
0
i)
�1Pn

i=1 xiyi, s
2 = 1

n

Pn
i=1 e

2
i and ei is the least squares residual.

Obviously, H(��) is singular with k+1 negative characteristic roots and one zero
root. The eigenvector associated with this root is given by z0 = (0; 0; 1). We search
the sign of �logL = logL(��+ �z)� logL(��) in the positive direction ( � > 0 ), since
� is constrained to be non-negative. By expanding the �logL the �rst term in the
series is zero since OLS is a stationary point. The second term also vanishes since
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jH(��)j = 0. So, the only relative point that remains to be evaluated is the third
derivative with respect of � at OLS solution

1

6
�3
@3log(��)

@�3
(25)

Substituting for the third derivative and ignoring higher order terms, we get

�logL �=
�3

6s3
f�2[$]3 + [3(!2�(!2)� !1�(!1)

�(!1)� �(!2)
) + 1]$ (26)

+
!22�(!2)� !21�(!1)

�(!1)� �(!2)
g

nX
i=1

e3i

where !1 =
B��
s
, !2 = ��

s
, and $ = �(!1)�!�(!2)

�(!2)��(!1) .
Now, it can be seen that the third order term of least squares residuals need

not always have the opposite sign with �logL. This will mainly depend on the
relationship between the imposed bound and the mean of the normal distribution.
For B < 2�, � is negative and the term in the curly brackets becomes positive. This
implies that in �nite samples whenever researcher �nds positively skewed residuals
it might be the case that the ine¢ ciencies have been drawn from a distribution that
has negative skew. For B = 2� , �logL = 0. In this case MLE should be employed
since it will be more e¢ cient than OLS and will provide us with technical ine¢ ciency
estimates. Asymptotically the third order term of OLS residuals and the expression
in curly brackets have the same sign since

plim(
1

n

nX
i=1

e3i ) = ��3u(2�3 � [3(
�1�(�1)� �2�(�2)

�(�2)� �(�1)
) + 1]� (27)

+
�21�(�1)� �22�(�2)

�(�2)� �(�1)
)

which implies that we can observe the "wrong" skewness even in large samples. So,
based on this generalized proof we can argue that the problem of the "wrong" skewness
is not a just �nite sample issue. Positive or negative skewness of least squares residuals
will always imply positive variance of ine¢ ciency process in large samples. In �nite
samples, anything can happen. We can obtain negatively skewed residuals even if we
sample from negatively skewed distribution of ine¢ ciencies. It remains an empirical
issue for the normal-doubly-truncated-normal model to not be able to identify positive
and negative skewness cases.
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5 Conclusions

Most of the distributions for ine¢ ciencies considered in stochastic frontier mod-
els are positively skewed. Half-normal distribution is commonly used in literature
and applications. Doubly truncated normal ine¢ ciencies generalize the model in a
way that allow the negative skewness, as well. This implies that �nding incorrect
skewness does not necessarily indicate that the model is misspeci�ed. The only mis-
speci�cation should arise from the fact that we might consider wrong distribution for
ine¢ ciency process which has the opposite skewness from the skewness of the least
square residuals. We formally prove that normal-doubly truncated normal model can
still be valid with the "wrong" sign of the skewness statistic and does not preclude its
appearance in large samples. Therefore, we add an additional strategy for this case
of conceived anomaly: to use bounded ine¢ ciency approach.
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6 Appendix

6.1 Truncated Normal and Doubly Truncated Normal Dis-
tributions

Below we depict four distributions for ine¢ ciencies that are discussed in current
paper. Namely, truncated normal and doubly truncated normal with zero, positive,
and negative skewness. The skewness statistic of truncated distribution is


1(B; �; �
2
u) =

�3u(2�
3 � [3( �1�(�1)

1��(�1)
) + 1]� + �21�(�1)

1��(�1)
)

1� �2 + �1�(�1)
1��(�1)

=
�3u
 2
�[2�2 � 3�1 � 1 + �21] (28)

where � � �(�1)
1��(�1)

and it has positive sign which means that 
1 is positive, as
well. Note that, as � grows large � and so 
1 tend to zero and the truncated normal
distribution resembles the bell-shaped normal distribution.

As mentioned previously, we still might have the skewness OLS residual to be
zero and the variance of ine¢ ciency process strictly positive14. This is the case when
B = 2� and is depicted on the following graph.

The graphs of positively skewed (B > 2�) and negatively skewed (B < 2�) inef-
�ciencies are provided below. Again it is clear that negative skewness does not imply
the lack of ine¢ ciencies

6.2 Inverse CDF method

In this part we describe the inverse CDF method which is used to sample from
distribution of composed error term. Particularly, we know that the density function
of doubly truncated normal ine¢ ciency term is given by

fu(u) =
1
�u
�(u��

�u
)

�(B��
�u
)� �(��

�u
)
1[0;B](x); �u > 0; B > 0; (29)

14Recall that in standard models the variance of ine¢ ciency term should be zero and the conclusion
is that there are no ine¢ cient �rms in the sample
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where �(�) and �(�) are the cdf and pdf of the standard normal distribution respec-
tively, and 1[0; B] is an indicator function.
The probability density function for the composite terror term, ", is derived as

follows. Since u and v are independent, the joint density function of u and v is

fu;v(u; v) =
[ 1
�u
�(u��

�u
)][ 1

�v
�( v

�v
)]

�(B��
�u
)� �(��

�u
)
1[0;B](x)

=
exp(� (u��)2

2�2u
� v2

2�2v
)1[0;B](x)

2��u�v(�(
B��
�u
)� �(��

�u
))
: (30)

The joint density function of u and " is then

fu;"(u; ") =
exp(� (u��)2

2�2u
� (u+")2

2�2v
)1[0;B](x)

2��u�v(�(
B��
�u
)� �(��

�u
))

(31)

By integrating u out of (31), we get the marginal distribution of ",

f"(") =

�
�(
B � �

�u
)� �(��

�u
)

��1
�
�
1

�
�(
"+ �

�
)

�
��

�(
(B + ")�+ (B � �)��1

�
)� �("�� ���1

�
)

�
; (32)

where

� =
p
�2u + �2v

� = �u=�v: (33)

The inverse CDF method requires that " is a continuos random variable with cdf
F and pdf f , respectively. Then, if U � U(0; 1) is uniform random variable on the
unit interval then the sample draws can be obtained from " = F�1(U). This of course
requires that the distribution function F can be easily calculated. To obtain the cdf
of " we need to integrate its pdf which is not an easy task. However, since, u and v
are assumed to be independent random variables we can independently draw them
and use " = � � u to construct the values of the overall error term. Hence, what we
need is to apply inverse CDF method to draw samples from doubly-truncated-normal
distribution. The cdf of this distribution is given by

F (u) = [�(
B � �

�u
)� �(��

�u
)]�1

1

�u

uZ
0

�(
u� �

�u
)dt (34)

=
�(u��

�u
)� �(��

�u
)]

�(B��
�u
)� �(��

�u
)
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U =
�(u��

�u
)� �(��

�u
)]

�(B��
�u
)� �(��

�u
)

(35)

By inverting (35) we can get the desired draws from

u = �+ �uF
�1(�(

��
�u
) + U [�(

B � �

�u
)� �(��

�u
)]) (36)

Having these tools at hand we could investigate various DGP�s with di¤erent
values of the parameters � and B.
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6.3 Identi�cation in normal-doubly-truncated-normal model

Stochastic Frontier Models are likelihood-based models and such as require care-
ful examination of identi�cation of parameters and ine¢ ciencies scores. Very few
studies consider these issues in SFM, among them Greene (1993, 2007) and Ritter
and Simar (1997). Rothenberg (1971), de�nes two kind of parametric identi�cations
in models based on likelihood inference: the global and the local identi�cation.

De�nition 1. Two parameter points (structures) �1 and �2 are said to be observa-
tionally equivalent if f(y; �1) = f(y; �2) for all y in Rn. A parameter point �0 2 � is
said to be identi�able if there is no � 2 � which is observationally equivalent. For
exponential family densities, this de�nition is equivalent to have the Fisher�s infor-
mation matrix nonsingular for every convex set of parameter points containing �.
For nonexponential family densities the condition requires that every parameter can
be expressed only as a function of sample moments of the corresponding probability
distribution. That is, suppose there exist p known functions g1(Y ); ::::; gp(Y ) such that
for all � in �

�i = E[gi(Y )] i = 1; 2; ::::::; p

Then every � in � is identi�able.

De�nition 2. A parameter point (structure) �0 is said to be locally identi�ed if there
exists an open neighborhood of �0 containing no other � in � which is observationally
equivalent. Equivalently, let �0 be a regular point of Fisher�s information matrix
I(�)15. Then �0 is locally identi�able if and only if I(�0) is nonsingular. In other
words, if I(�) is nonsingular for �0 2 � , then there exists a neighborhood N(�0) � �
of �0 in which no � is equivallent to �0.

In deriving the COLS estimators we observed that the sample moments of least
squares residuals are complicated functions of model parameters and due to symmetry
of the standard normal distribution there is no way for us to uniquely express the
later in terms of formers and the data. Hence, the normal-doubly trunctated normal
model is not globally identi�ed. The same holds for normal-truncated normal model.
It is straightforward, however, to show the global identi�cation of normal-half normal
model. Thus, failing to obtain the results for global identi�cation, we need to check
the conditions for local identi�cation. We do so for both models.
The log-likelihood function (14) for single observation is given by

15see Rothenberg 1971, pp 579 for the relevant de�nition of the regular point
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ln(L) = � ln[�(B � �

�
(��2 + 1)1=2)� �(��

�
(��2 + 1)1=2)] (37)

� ln� � 1
2
ln(2�)� ("i + �)2

2�2

+ lnf�((B + "i)�+ (B � �)��1

�
)

��("i�� ���1

�
)g

which for B = 1 reduces to the log-likelihood function of normal-truncated-
normal model

ln(L) = � ln[�(�
�
(��2 + 1)1=2)] (38)

� ln� � 1
2
ln(2�)� ("i + �)2

2�2

+ lnf�(��
�1 � "i�

�
)g

The �rst order conditions for maximization of (37) with respect to its parameters
are

@ ln(L)

@�
=
("i + �)xi

�2
+
�xi
�

�(�4)� �(�3)

�(�3)� �(�4)
(39)

@ ln(L)

@�2
=

1

2�2
[(�1�(�1)� �2�(�2)]
�(�1)� �(�2)

� 1

2�2
+
("i + �)2

2�4
+

1

2�2
[�4�(�4)� �3'(�3)]
�(�3)� �(�4)

(40)

@ ln(L)

@�
=

(��2 + 1)�1

�3
[(�1�(�1)� �2�(�2)]
�(�1)� �(�2)

+ (41)

1

�

[((B + "i)�+ (B � �)��2)�(�3)� ("i�� ���2)�(�4)]

�(�3)� �(�4)

@ ln(L)

@�
=
(��2 + 1)1=2

�

�(�1)� �(�2)

�(�1)� �(�2)
� ("i + �)

�2
+
1

��

�(�4)� '(�3)

�(�3)� �(�4)
(42)
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@ ln(L)

@B
= �(�

�2 + 1)1=2

�

�(�1)

�(�1)� �(�2)
+ (

�

�
+
1

��
)

�(�3)

�(�3)� �(�3)
(43)

where �1 =
(B��)
�
(��2 + 1)1=2, �2 =

��
�
(��2 + 1)1=2, �3 =

(B+"i)�+(B��)��1
�

, and

�3 =
"i�����1

�
.

These give us �ve equations with �ve unknown parameters to be estimated. Again
it can be seen that there is no closed-form and unique solution to these parameters.
We check the local identi�cation of these two models by examining the Fisher�s

information matrix evaluated at a given parameter point. Ritter and Simar (1997)
note that the distribution of the composite error in normal-gamma stochastic frontier
model tends to the normal distribution as the shape parameter of the gamma distrib-
ution increases without bound and the scale parameter remains relatively low. In this
case the model parameters and ine¢ ciencies cannot be identi�ed. This is also the case
for normal-truncated-normal model, wherein for relatevily small values of parameter
� the distribution resembles the normal distribution as the mean of ine¢ ciencies �
becomes relatively large. Therefore, this model fails to be locally identi�ed in this
particular case. On the other hand, the bounded ine¢ ciency model is still capable
to identify the model parameters even for large values of �, since the existence of
the bound will produce heavier right tails. We prove the local identi�cation of the
normal-doubly truncated normal model and in turn the local unidenti�abilty of the
normal-truncated normal model for large �.
The representation of these two cases is provided on below graphs, where the

truncated normal density looks like the normal density for values of � as low as 1,
while keeping the variance of inr¢ ciencies to be half. On the other hand, doubly
truncated distribution distinguishes itself from the normal distribution in the sense
that its right tail will be shorter than its corresponding left tail. Henceforth, the model
will be identi�ed even for large values of the parameter �. It is worth to mention
that often the empirical distribution of ine¢ ciencies looks like normal distribution.
Therefore, without imposing the bound it is di¢ cult to identify it from normally
distributed noise term.

Claim: There is a �0 2 R such that for any � > �0 the normal-truncated normal
model is not locally identi�ed. However, normal-doubly truncated normal model can
still be identi�ed.

Proof. The Fisher�s information matrix evaluated at � > �0 for the normal-trunctated
normal is given by
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I(�; �2; �; �) =

2664
� 1
�2

Pn
i=1 xix

0
i � 1

�4

Pn
i=1("i + �)xi 0 � 1

�2

Pn
i=1 xi

� 1
�4

Pn
i=1("i + �)xi

n
2�4
� 1

�6

Pn
i=1("i + �)2 0 � 1

�4

Pn
i=1("i + �)

0 0 0 0
� 1
�2

Pn
i=1 xi � 1

�4

Pn
i=1("i + �) 0 � n

�2

3775
which is clearly singular. Hence, the model is not locally identi�ed.
On the other hand, the information matrix evaluated at � > �0 for the normal-

doubly trunctated normal model is given by

I(�; �2; �; �;B) =

26666664

@2 ln(L)
@�@�0

@2 ln(L)
@�@�2

@2 ln(L)
@�@�
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@2 ln(L)
@�@B

@2 ln(L)
@�2

@2 ln(L)
@�@B
@2 ln(L)
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37777775
where the elements of this matrix are given by the corresponding second-order

derivatives of the log-likelihood function

@2 ln(L)

@�@�0
= � 1

�2

nX
i=1

xix
0
i
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16Note that large values of � are followed by large values of bound so it can be assumed that
�3�(�3)! 0 as well
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For certain bounds and by the property of the standard normal distribution, which
assumes the existency of the bound whenever its deviation from the mean does not
exceed three standard deviations17, the determinant of the Fisher�s information matrix
is not zero, as long as the signal-to-noise ratio, �, is relatively high. As �! 0, both
models fail to be identi�ed.

In sum, both normal-doubly truncated normal SFM and normal-truncated normal
SFM fail to be globally identi�ed, but are locally identi�ed. However, if the true

17Otherwise we will reproduce the truncated normal distribution
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density of ine¢ ciencies has a large mean, the later model fails to be even locally
identi�ed, but the former model can still yield more precise and stable estimates of
parameters and ine¢ ciencies. Still it is not clear how can the statistical inference be
validated in locally identi�ed case. Shapiro (1986) and Dasgupta et al. (2007) discuss
some cases there valid statistical inference can be obtained. Bayesian method could
be utilized to identify the parameters through nonlinear constraints imposed by the
skewness condition. We leave this possibility for the future work.
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Table1: Proportion of Positive Skewness in Normal-Doubly Truncated Normal
Model with � = 1

n B = 1 B = 2 B = 5 B = 10

50 0.519 0.505 0.480 0.509
100 0.481 0.501 0.516 0.520
200 0.495 0.473 0.514 0.493

� = 0:1 500 0.487 0.503 0.539 0.507
103 0.520 0.516 0.510 0.494
104 0.504 0.483 0.512 0.498
105 0.532 0.492 0.437 0.405

50 0.517 0.485 0.503 0.510
100 0.545 0.491 0.459 0.479
200 0.551 0.490 0.486 0.466

� = 0:5 500 0.520 0.488 0.431 0.459
103 0.564 0.514 0.453 0.435
104 0.684 0.491 0.397 0.318
105 0.759 0.496 0.107 0.092

50 0.565 0.536 0.367 0.383
100 0.524 0.513 0.317 0.335
200 0.529 0.512 0.224 0.245

� = 1 500 0.567 0.514 0.155 0.122
103 0.576 0.524 0.063 0.051
104 0.709 0.501 0 0
105 0.943 0.503 0 0

� The �rst column shows that the proportion of the samples with the positive
("wrong") skewness increases as the sample size grows larger. It converges to
one as the variance of the one-sided ine¢ ciency term becomes larger relative to
the variance of two-sided error.

� In the second column we have the case where B = 2� . Under this case there
is about a 50-50 chance that we generate a sample with positive skewness. In
most of the cases, the positive skewness appears to be statistically insigni�cant.

� The third column presents the case where we have a positively skewed distribu-
tion of ine¢ ciencies and as in Simar and Wilson (2009) the proportion decreases
as the sample size and parameter � increase.
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